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In this paper, a weakly nonlinear stability of viscoplastic fluid flow is performed.
The system consists of a plane Rayleigh–Bénard–Poiseuille (RBP) flow of a Bingham
fluid. The basic flow is characterized by a central plug zone, of 2yb width, in which
the stresses are smaller than the Bingham number B , the dimensionless yield stress.
The Bingham model assumes that inside this zone the material moves as a rigid
solid, and that outside this zone it behaves as a viscous fluid. The aim of this study
is to investigate the influence of the yield stress on the instability conditions. The
linear stability analysis is performed using a modal method and provides critical
values of Rayleigh and wavenumbers, from which the system becomes unstable. The
critical mode, i.e. the least stable mode, is also determined. This mode, also called
the fundamental mode, creates perturbation harmonics which cannot be neglected
above criticality. The weakly nonlinear analysis is performed for small-amplitude
perturbations. In this study, the quadratic modes of the perturbation are determined.
Results indicate that the nonlinear modes perturbation can attain high maximal
values, which is the consequence of the high variations of viscosity in the flow. The
characterization of the complex Landau equation sheds light on a transition in terms
of the bifurcation nature above a critical Péclet number Pec = O(1). Below Pec, it
is found that a supercritical equilibrium state could exist, such as in the Newtonian
case, while above Pec, the bifurcation becomes subcritical. One observes a sharp
transition from supercritical to subcritical bifurcation as the Péclet value is increased.
A dependence of Pec on the yield stress is highlighted since the subcritical bifurcation
is first observed for weak values of yb (yb < O(10−1)). For this range of values, the
transition is mainly due to the presence of the unyielded region via non-homogeneous
boundary conditions at the yield surfaces. Then for yb >O(10−1), the change of the
bifurcation nature is due to the variations of the effective viscosity in the unyielded
regions.
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1. Introduction
We study the stability of the fully developed mixed convection flow, termed the

Rayleigh–Bénard–Poiseuille (RBP) flow, for viscoplastic fluids whose rheological
behaviour is assumed to be described by the Bingham model (Bingham 1920; Oldroyd
1947a, b). Even though this model is the simplest one, it accounts for all the features
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of viscoplastic fluids, namely a yield stress and a shear-thinning behaviour. According
to this model, the material moves as a rigid body when the applied stress is less than
the yield stress and behaves as a nonlinear viscous fluid above the yield stress.

The RBP flow corresponds to a mixed convection flow between two parallel plates
maintained at different temperatures. The RBP flow has two sources of convective
instability: the buoyancy-driven source similar to the Rayleigh–Bénard instability
(natural convection), which is governed by the Rayleigh number Ra and leads to
thermoconvective rolls; the horizontal shear flow governed by the Reynolds number
Re which leads at high flow rates to Tollmien–Schlichting waves. The stability of the
RBP flow concerns mainly low flow rates. Temporal linear stability analyses were
performed by Gage & Reid (1968) for air (Pr = 1) and generalized to Newtonian
fluids by Platten (1971). These studies show that the Newtonian three-dimensional
case can be deduced from the two-dimensional case via the Squire transformation.
Moreover, they also show that longitudinal rolls (LRs) (rolls aligned with the shear
flow) are less stable than the transversal rolls (TRs) (orthogonal to the shear flow).
The LRs are obtained from the critical Rayleigh number Ra = 1708 independently
from the Reynolds number. Transition from the LRs to TRs is obtained by increasing
Ra with an increment proportional to Re2 for small Reynolds numbers (Re <O(1)).
Linear stability analysis assumes that the perturbation is small and leads to one
unstable mode which is not damped above criticality. Yet, the amplitude perturbation
remains locally small since the nonlinear dynamics of the system limits the instabilities
increase. Müller, Lücke & Kamps (1989) have studied the nonlinear dynamics of the
two-dimensional TRs for weak values of Re. Determining the amplitude evolution via
the Ginzburg–Landau equation, the authors highlight a supercritical bifurcation for
the Newtonian RBP flow. More recently, the absolute-convective nonlinear stability
of the three-dimensional Newtonian RBP flow has been studied when the system
is inhomogeneously heated (Carrière & Monkewitz 2001; Martinand, Carrière &
Monkewitz 2006). As in the approach of Müller et al. (1989), this paper focuses on
the weakly nonlinear stability analysis of the two-dimensional Bingham RBP flow for
TRs, regardless of their convective or absolute nature. Concerning the shear-thinning
and viscoplastic fluids, only a few studies have been performed. Indeed, Khayat (1996),
Albaalbaki & Khayat (2008) and Ashrafi & Khayat (1999) investigate the (weakly)
shear-thinning effect on the onset of chaos for the two configurations: the Rayleigh–
Bénard and the Taylor–Couette. Considering the Carreau–Bird law and deriving the
dynamical systems at low order, the authors show that for the two configurations, the
shear-thinning precipitates the onset of chaos, via a transition from supercritical to
subcritical bifurcation, at a value of control parameter that may be well below the one
corresponding to Newtonian fluids. For viscoplastic fluids, a weakly nonlinear analysis
has been performed by Cheng & Lai (2008) in the configuration of Bingham vertical-
liquid (thin) film which is fully yielded. This paper highlights clearly the change in the
nature of the bifurcation as observed by Khayat and co-workers. This transition has
also been observed qualitatively by Balmforth & Rust (2009) in the Rayleigh–Bénard
configuration. In this paper, approximations are made assuming that the perturbation
is strong enough to exceed the yield stress in the whole domain leading to a fully
yielded fluid. In these two configurations, the authors do not have to treat the two
phases (liquid-like phase and solid-like phase, respectively) of the material. In this
paper, we propose to study the weakly nonlinear instability of the Bingham RBP flow
dealing with the two phases, which is a major difficulty involved by the viscoplastic
fluids. To our knowledge, the weakly nonlinear analysis of viscoplastic fluids dealing
directly with the yield stress conditions has never been performed.
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The primary flow of the plane Bingham RBP configuration is characterized by a
central unyielded region moving at a constant velocity and yielded regions on the
both sides. The linear stability of this flow regarding the TRs rolls has been studied
by Métivier, Nouar & Brancher (2005) and Métivier & Nouar (2008) via temporal
and energetic approaches. In the linear stability analysis, the base flow is subjected
to small perturbations for which the amplitude perturbation is not large enough to
break up the unyielded region. In other words, the topology is implicitly assumed
to be unchanged. Métivier & Nouar (2008) determined the critical conditions above
which propagating convective patterns in the form of travelling waves appear on both
sides of the plug zone. It is shown that the yield stress has a stabilizing effect via the
presence of the unyielded region and the increase in the effective viscosity in the flow
domain. These last conclusions are similar for the modal and energetic approaches
for small values of Reynolds number, i.e. Re <O(1). However, the numerical results
indicate a discrepancy between the critical conditions obtained via the two approaches
which is enhanced from Re >O(1) and for increasing Re values. This discrepancy
highlights the non-normality of the linear operator which is a necessary condition
for a transient growth of the energy perturbation. Métivier et al. (2005) investigated
the case where the yield stress tends to zero and showed that the critical conditions
do not tend to the ones obtained in the Newtonian RBP case since the unyielded
region remains intact. In this situation, the problem has to be compared to the
Newtonian–Couette RBP stability flow.

Above criticality, the perturbation evolution can be obtained via a weakly nonlinear
analysis determining the amplitude equation, in particular in this study, the evolution
in time of the perturbation amplitude A. The amplitude equation, i.e. the complex
Landau equation, can be written as

∂tA = σ A + λ1 |A|2A, (1.1)

with σ the growth rate determined from the linear theory and λ1 the first correction
regarding the nonlinearities.

As in the linear stability analysis, the framework of the weakly nonlinear analysis
corresponds to a small-amplitude perturbation compared with all the scales of the
basic flow. As a consequence, the unyielded region is weakly perturbed and the
yield surface topology remains similar to the basic state topology, i.e. the yield
surfaces separate the flow domain into yielded and unyielded regions, respectively.
This consideration is fundamental for our study since it permits us to know a priori
the structure of the flow.

Once the perturbation becomes finite, the topology of the perturbed flow is unknown
a priori since the stresses remain indeterminate in the unyielded regions and since
the boundaries of such zones are implicitly determined. The nonlinear stability of the
plane Bingham RBP flow has been performed by Métivier, Frigaard & Nouar (2009).
Using an energetic approach and some approximations on the stress perturbation,
the bounds and tendencies for stability conditions as function of the yield stress have
been determined.

The aim of this paper is to characterize the influence of the yield stress and
the shear-thinning behaviour on the nonlinear features of the perturbed flow by
considering a small perturbation. In this respect, a weakly nonlinear stability analysis
is performed in order to obtain the complex amplitude equation. The current
derivation follows the one developed by Reynolds & Potter (1967) and Herbert
(1983), and consists of introducing a double expansion in terms of the Fourier series
and linear eigenfunctions in the hydrodynamical and thermodynamical equations.
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Fujimura (1989) and Fujimura (1997) showed that the amplitude equation derived
by the formal expansion in linear eigenfunctions is equivalent to the one derived
by the method of multiple scales. A brief outline of the paper is given as follows.
After presenting the basic state of the Bingham RBP flow in § 2, the mathematical
formulation of the weakly nonlinear analysis is developed in § 3, treating both the
unyielded and yielded regions as well as the non-material interfaces involved by
the two phases. This section presents the nonlinear motion and heat equations in
both regions as well as the boundary conditions associated with the configuration.
Considering the classical form of the perturbation, i.e. a fundamental mode, and the
harmonics created from the fundamental mode via the nonlinearities, the motion and
heat equations satisfied by the first harmonic (modes 0 and 2) are also developed.
This section ends with the formulation of the amplitude equation. The numerical
results are presented in § 4. It first recalls briefly the critical conditions, i.e. critical
parameters values, critical modes and also the adjoint mode, obtained from the linear
stability analysis. Then the section is devoted to presenting the results of the first
harmonic and finally the amplitude equation coefficients, allowing us to predict the
nature of the bifurcation. New results are presented and thoroughly discussed. Finally,
§ 5 summarizes the main findings obtained in this study.

2. Base flow
We consider a Bingham-fluid flow in a horizontal plane channel under the action

of imposed constant axial pressure gradient. The lower wall is kept at a temperature
T1 higher than that of the upper wall temperature T2. The non-dimensional velocity,
pressure and temperature fields (U, P , T ) are solutions of the continuity, momentum
and energy equations. Considering the Boussinesq approximation, i.e. considering that
the fluid-density variation is negligible except in the buoyant effects, they are given
by

∇ · U = 0, (2.1a)

Re U t + Re2 Pr (U · ∇) U = −Re Pr ∇P + Ra T ey + Re Pr ∇ · τ , (2.1b)

Tt + Re Pr (U · ∇) T = ∇2T . (2.1c)

The non-dimensional form of the above equations is obtained by using the channel
width L̂, the diffusion time L̂2/â and the plastic viscosity µ̂0, as characteristic
scales for lengths, time and viscosity, respectively. Here, â is the thermal diffusivity.
As the basic state is a pressure-driven flow, the maximum of the axial velocity
Û0 is taken as a characteristic scale for the velocities. In the buoyancy-driven
problem, the velocity of the thermal diffusion has a key role in the evolution of the
perturbation, and therefore has been used as a characteristic scale for the velocities in
the stability analysis. The nominal stress µ̂0Û0/L̂ stands for the stresses and pressure
characteristic scales. The temperature difference δ T̂ = T̂1 − T̂2 provides a reference
value for the temperatures: T = (T̂ − T̂0)/δT̂ . The resulting control parameters,
the Reynolds, Prandtl and Rayleigh numbers, respectively, are given by

Re =
ρ̂Û0L̂

µ̂0

, Pr =
µ̂0

ρ̂â
and Ra =

ρ̂βgδT̂ L̂3

µ̂0â
,

where β is the thermal expansion, ρ̂ the material density and ĝ the gravitational
acceleration.
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Figure 1. Velocity profile for yb = 0.1 (B = 1.25). The central plug region is
indicated by the dashed lines.

Moreover, τ is the deviatoric stress tensor determined by the constitutive Bingham
model:

τ = µγ̇ if and only if τ > B , (2.2a)

γ̇ = 0 if and only if τ � B, (2.2b)

with µ =1 + (B/γ̇ ) the effective viscosity, γ̇ the rate of strain tensor, τ = (τij τij/2)1/2

and γ̇ = (γ̇ij γ̇ij/2)1/2 the second invariants of the tensors τ and γ̇ . The Bingham

number is given by B = τ̂0/(µ̂0 Û0/L̂), where τ̂0 is the yield stress. When τ � B , the
material behaves from the kinematic point of view as a rigid solid and the stresses
are not determined.

The regions where τ � B are termed as unyielded regions or plug zones. They
are bounded by yield surfaces defined by the condition τ = B . The motion of these
non-material surfaces is determined only by the stress field in the yielded zone.

The steady laminar flow is the plane Bingham–Poiseuille flow with a vertical thermal
stratification:

Ub(y) =

⎧⎪⎨⎪⎩
1 for |y| � yb,

1 −
(

|y| − yb

1/2 − yb

)2

for yb < |y| < 1/2,
(2.3)

Tb = −y (2.4)

and

pb (x, y) = pref − Ra
y2

2
− 2

((1/2) − yb)
2
x, (2.5)

where pref is a reference pressure.
This fully developed flow is mainly characterized by a central plug zone of 2yb

width which moves as a rigid solid (figure 1) and a nonlinear variation of the effective
viscosity in the yielded region. According to the Bingham model, µ increases from
the wall and tends to infinity near the yield surface, as shown in figure 2, where the
viscosity profile is displayed for different values of yb. In figure 2, one can notice that
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Figure 2. Evolution of the effective viscosity in the lower yielded region for different values of
yb: −−−−−, yb = 0.005 (B = 0.04); - - -, yb = 0.105 (B = 1.34); −·−·−, yb = 0.305 (B = 16.04);
− · · − · · −, yb = 0.405 (B = 89.75).

the higher the yield stress is, the higher the degree of nonlinearity of the rheological
behaviour becomes.

The B -dependency of yb is deduced from the relation τxy = −(∂P/∂x)y, written at
the wall, combined with (2.5). One can easily obtain

B (1 − 2yb)
2 − 8yb = 0, (2.6)

which has one physical solution:

yb =
2 + B − 2

√
B + 1

2B
. (2.7)

3. Stability analysis: mathematical formulation
3.1. Governing equations

This section is devoted to the weakly nonlinear stability analysis of the basic state
defined in the previous section. For that purpose, a perturbation V = (ψ, θ)T is added
to the basic state (ψb, Tb)

T , where ψ corresponds to the streamfunction defined by
∂xψ = −v and ∂yψ = u for the velocity u = (u, v)T ; and the exponent T denotes the
matrix transposition.

The perturbed flow (ψb +ψ, Tb + θ)T satisfies the conservation equations.
Subtracting out the base-flow equations, the perturbation equations are obtained as

D∂V
∂t

= LRV + N2(V , V ) + N3(V , V , V ) + · · · , (3.1)

where D is a diagonal matrix, LR represents the linear operator and N2(V , V ),
N3(V , V , V ) the quadratic and cubic nonlinear terms, respectively. Here, D and LR

are matrices of linear operators:

D =

(
D1 0

0 D2

)
(3.2)
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and

LR =

(
LR1 LR2

LR3 LR4

)
. (3.3)

The quadratic and cubic nonlinear terms may be written in a vectorial form
as N2(V , V ) = (N21, N22)

T and N3(V , V , V ) = (N31, N32)
T . The expressions of the

different operators are given in the following paragraphs.
At the walls, we write the no-slip conditions and the imposed temperature

conditions, respectively, as follows:

∂yψ
(
± 1

2

)
= −∂xψ

(
± 1

2

)
= 0, (3.4)

θ
(
± 1

2

)
= 0. (3.5)

At the yield surfaces, y = y
±
i , the following condition must be satisfied:

γ̇ij (Ub + u)|
y

±
i

= 0, (3.6)

as well as the velocity continuity. Considering that y
±
i = ±yb ± Y ±, one obtains the

following conditions for the yield surfaces:

∂xyψ |±yb
+ (±Y ±)∂xyyψ |±yb

+
(±Y ±)2

2
∂xyyyψ |±yb

+ · · · = 0, (3.7)

∂yUb|±yb
+ (±Y ±)∂yyUb|±yb

+ ∂yyψ |±yb
+ (±Y ±)∂yyyψ |±yb

+
(±Y ±)2

2
∂yyyyψ |±yb

+ · · · = 0 (3.8)

and

∂xxψ |±yb
+ (±Y ±)∂xxyψ |±yb

+
(±Y ±)2

2
∂xxyyψ |±yb

+ · · · = 0. (3.9)

Here ±Y ± corresponds to the perturbation of the upper yield surface (+) and the
lower yield surface (−), respectively. Details of the development of the yield surface
conditions are given in Appendix A.

As a remark, one can highlight that in (3.8) the second derivative of Ub is not
continuous at y = ±yb. It implies that this condition has to be considered on both sides
of the yield surfaces, i.e. considering the yielded and the unyielded sides separately.

3.2. Vorticity equation

According to the Bingham model, we have γ̇ij = 0 in the unyielded region. Assuming
that the perturbation is periodic in the streamwise and spanwise directions, the
unyielded region moving as a rigid body can have only a translational motion. Thus,
inside the plug, the velocity uB is independent of the spatial coordinates:

u = uB(t), (3.10)

in other words,

∂xu = ∂yu = 0. (3.11)

In the yielded regions, i.e. regions where τ >B , the deviatoric stress tensor for the
perturbed flow is expanded about the base flow as

τij = τbij + τ ′
ij , (3.12)



Weakly nonlinear stability analysis 323

where τ ′ =
∑N

k=1τ k + O((γ̇ ′)N+1) is the stress tensor perturbation, and

τ1ij =
∂τij

∂γ̇kl

∣∣∣∣
b

γ̇ ′
kl, (3.13)

τ2ij =
1

2

∂2τij

∂γ̇kl∂γ̇mn

∣∣∣∣
b

γ̇ ′
kl γ̇

′
mn, (3.14)

τ3ij =
1

6

∂3τij

∂γ̇kl∂γ̇mn∂γ̇pq

∣∣∣∣
b

γ̇ ′
kl γ̇

′
mn γ̇

′
pq. (3.15)

The index b means that the terms are evaluated at Ub, the base flow. One can
notice that τ 1, τ 2, τ 3 correspond, respectively, to the linear, bilinear and trilinear
stress tensor perturbation since the only perturbation terms spring from the γ̇ ′

components.
Since the problem considered is bidimensional, defining γ̇ b = |γ̇xy (Ub)| = |∂yUb|

and τb =µb(γ̇
b) γ̇xy (Ub), the general expressions (valid for any constitutive law of

Reiner–Rivling type) of the τ k components are given as follows:

τ1ij =
∂τij

∂γ̇kl

∣∣∣∣
b

γ̇ ′
kl = (µt − µb)(δ1iδ2j + δ2iδ1j )γ̇

′
xy + µbγ̇

′
ij , (3.16)

τ2ij =
1

2

[
∂2τij

∂γ̇kl ∂γ̇mn

]
b

γ̇ ′
kl γ̇

′
mn =

µt − µb

4γ̇ b
(δ1iδ2j + δ2iδ1j )(γ̇

′
mn)

2 +
µt − µb

γ̇ b
γ̇ ′

ij γ̇
′
xy

+
1

2
(δ1iδ2j + δ2iδ1j )(γ̇

′
xy )

2

(
∂2τb

(∂γ̇ b)2
− 3

µt − µb

γ̇ b

)
, (3.17)

τ3ij =
∂µb

∂γ̇ b

1

2 γ̇ b

[
(δ1iδ2j + δ2iδ1j )

(
(γ̇ ′

xy )
3 − 1

2
(γ̇ ′

kl)
2γ̇ ′

xy

)
− (γ̇ ′

xy )
2γ̇ ′

ij +
1

2
(γ̇ ′

pq)
2γ̇ ′

ij

]
+

1

2

∂2µb

(∂γ̇ b)2

[
(δ1iδ2j + δ2iδ1j )

(
−(γ̇ ′

xy )
3 +

1

2
(γ̇ ′

kl)
2γ̇ ′

xy

)
+ (γ̇ ′

xy )
2γ̇ ′

ij

]
+

1

6

∂3µb

(∂γ̇ b)3
γ̇ b(δ1iδ2j + δ2iδ1j )(γ̇

′
xy )

3 (3.18)

with δij the Kronecker delta function and

µt =
∂τb

∂γ̇ b
, (3.19)

∂µb

∂γ̇ b
=

1

γ̇ b

(
∂τb

∂γ̇ b
− τb

γ b

)
=

µt − µb

γ̇ b
, (3.20)

∂2µb

(∂γ̇ b)2
=

1

γ̇ b

[
∂2τb

(∂γ̇ b)2
− 2

γ̇ b

(
∂τb

∂γ̇ b
− τb

γ̇ b

)]
, (3.21)

∂3µb

(∂γ̇ b)3
=

1

γ̇ b

[
∂3τb

(∂γ̇ b)3
− 3

1

γ̇ b

∂2τb

(∂γ̇ b)2
+

6

γ̇ b

(
∂τb

∂γ̇ b
− τb

γ̇ b

)]
. (3.22)

Here µt given by (3.19) corresponds to the tangent viscosity of the unidirectional
base flow. For Bingham fluid, µt corresponds to the plastic viscosity and
∂2τb/(∂γ̇ b)2 = ∂3τb/(∂γ̇ b)3 = 0. The expressions of τ k (k � 3), for the Bingham fluid
case, are given in Appendix B.
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Remarks. (i) The expressions (3.16)–(3.18) correspond to the shear stress
perturbation, for which the development of the general Reiner–Rivling law has been
carried out as a function of the γ̇ invariants. One can notice that the terms factor of
(δ1iδ2j + δ2iδ1j ) correspond to anisotropic shear stress perturbation terms as they only
appear in the xy components of τ ′. A consequence of these anisotropic terms is that
there is no equivalence to Squire’s transformation for Bingham fluids (and for other
nonlinear viscous fluids) unless unphysical restrictions are made (Georgievskii 1993).
In other words, the three-dimensional case cannot be deduced from the bidimensional
configuration as is done for Newtonian fluids. (ii) Here, the bilinear and trilinear forms
of the shear stress tensor are only due to the viscosity perturbation.

The vorticity equation is obtained by calculating the curl of (2.1b). The knowledge
of the linear, bilinear and trilinear forms of the stress tensor, permits determination
of the different orders, in terms of the perturbation field, in the vorticity equation.
Then, in the yielded regions, at first order, i.e. the linear operators of the perturbed
vorticity equation are given by

D1 ≡ − 1

Pr
∆, (3.23)

LR1 ≡ −∆2 + Re(Ub∂x∆ − D2Ub ∂x) − 4B ∂y

(
∂xxy

γ̇b

)
, (3.24)

where ‘∂y ’ is replaced by ‘D’ for the functions depending only on y,

LR2 ≡ Ra ∂x. (3.25)

One obtains the quadratic term as follows:

N21 =
1

Pr
[−∂yψ ∂x∇2ψ + ∂xψ ∂y∇2ψ] + (∂xx − ∂yy)τ2xy

(ψ, ψ)

+ ∂xy (τ2yy
(ψ, ψ) − τ2xx

(ψ, ψ)) (3.26)

as well as the nonlinear cubic term given by

N31 = (∂xx − ∂yy)τ3xy
(ψ, ψ, ψ) + ∂xy [τ3yy

(ψ, ψ, ψ) − τ3xx
(ψ, ψ, ψ)]. (3.27)

The quadratic term (3.26) in the vorticity equation has an inertial contribution, such
as the Newtonian case. For the non-Newtonian case, the quadratic and cubic terms
have a viscosity-perturbation contribution, via the shear stress perturbation (τ 2 and
τ 3 components). For readability reasons, the final expressions of N21 and N31 can be
found in Appendix B. Since the nonlinear shear stress terms, or viscosity perturbation
terms, are factor of B , for simplicity we would call these terms ‘Bingham terms’.

3.3. Energy equation

Using the energy equation, written in terms of ψ and θ , the expressions of the linear
operators, quadratic and cubic terms are easily identified:

D2 ≡ −1, (3.28)

LR3 ≡ −DTb∂x, (3.29)

LR4 ≡ −∂yy − ∂xx + PrReUb∂x (3.30)

and

N22 = −(∂yθ) (∂xψ) + (∂xθ) (∂yψ). (3.31)



Weakly nonlinear stability analysis 325

The energy equation does not contain any cubic terms, hence

N32 = 0. (3.32)

3.4. Perturbation modes
3.4.1. Assumptions

Classically, the perturbation solution is sought as

V = A(t) eiα(x−ct)V 1(y) + c.c. + |A(t)|2 V 0(y) + A(t)2 e2iα(x−ct)V 2(y) + c.c.

+ |A(t)|2 A(t)V 3(y) e3iα(x−ct) + c.c. + · · · , (3.33)

where V n(y) = (fn(y), θn(y))T and ‘c.c.’ means ‘complex conjugate’. In the following,
we use the notation En = einα(x−ct). As the yield surfaces are determined via the stress
field in the yielded zone, the perturbed yield surfaces have a similar form to V :

Y ± (x, t) = AE1Y
±
1 + |A|2 Y

±
0 + A2E2Y

±
2 + |A(t)|2A(t) Y

±
3 E3 + c.c + · · · . (3.34)

Developments (3.33)–(3.34) are assumed valid for Ra values close to the critical
value Rac, i.e. ε = (Ra/Rac) − 1 � 1. One can notice that in this study, the variations
of the Rayleigh number, above criticality, are implicitly obtained by increasing δT̂ ,
the difference temperature between the two walls.

Moreover, it is assumed that the complex amplitude A(t) evolves slowly with
time and remains small. This last assumption is conditioned by the fact that the
fundamental mode dominates the perturbation. Since no confusion is possible, we
write A for A(t), in the following.

The weakly nonlinear analysis consists in writing the system to the different
amplitude orders identifying the terms in the modal basis En. In this paper, we
consider the case −3 � n � 3.

3.4.2. First order: fundamental

The fundamental V 1 = (f1, θ1)
T corresponds to the linear critical mode. The linear

problem is defined by writing (3.1) to order O(A):

c D.(V 1 E1) = LR.(V 1 E1). (3.35)

In the yielded region:

−iα c

(D1 0

0 −1

) (
f1

θ1

)
=

(LR1 iαRa

iα LR4

) (
f1

θ1

)
.

The operators LR1, LR3 and D1 read as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
LR1 ≡ +iα Re [Ub (D2 − α2) − D2Ub] − (D2 − α2)2 + 4 α2 BD

(
D

|DUb|

)
,

LR4 ≡ iα Pr Re Ub − (D2 − α2),

D1 ≡ − 1

Pr
(D2 − α2).

In the unyielded region:

f1 = 0, (3.36)

LR3 θ1 = c θ1. (3.37)

The fundamental V 1 satisfies the following boundary conditions. At the walls,

f1(±1/2) = Df1(±1/2) = 0 (3.38)
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and

θ1(±1/2) = 0. (3.39)

The linearized conditions (3.6) at the yield surfaces lead to

f1(±yb) = 0, Df1(±yb) = 0, (3.40)

D2f1(±yb) = ±Y
±
1 D2Ub(±yb). (3.41)

Remark. Equation (3.41) gives a condition for Y
±
1 , not for f1, considering the value

of the derivative on the yielded side. If we consider the unyielded side, we obtain
D2f1(±yb) = 0.

The solution of the system (3.35)–(3.41) is determined apart from an arbitrary
multiplicative factor. In order to define a solution reference, we choose the following
normalization:

‖V 1‖ =
eix0

‖V 1‖∞
V 1, (3.42)

with ‖V 1‖∞ = maxy

√
Re(V1)2 + Im(V1)2 the infinity norm, and the reference phase

x0 = arctan(−Im(‖V 1‖∞)/Re(‖V 1‖∞)).

3.4.3. Second order: quadratic modes

The first harmonic is generated via the quadratic nonlinear terms. At O(A2), the
interactions of the fundamental with itself or with its complex conjugate, respectively,
lead to two different terms called modes 2 and 0. This section is devoted to the
definition of these modes.

Mode 2, V 2 = (f2, θ2)
T , corresponds to the first harmonic of the perturbation and is

produced by the interaction of the fundamental with itself in the quadratic nonlinear
terms N2(V , V ).

In the yielded region one can write

P12f2 + 2iα Pr Re Raθ2 = P22 (f1, f1), (3.43)

P32θ2 + 2iαf2 = −iα (θ1 Df1 − Dθ1 f1), (3.44)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P12 ≡ −2iα cReP + 2iαPrRe2[ UbP − D2Ub] − PrReP2 + 16 B α2 PrReD

[
D

|DUb|

]
,

P ≡ D2 − 4α2,

P22(f1, f1) = −Re iα(Df1 D2f1 − f1 D3f1)

+ B

(
1

γ̇b DUb

)(
10 α4 (Df1)

2 + 8 α4 f1 D2f1 + 9 α2 (D2f1)
2

+ 9 α2 Df1 D3f1

)
+ B

(
D2Ub

γ̇b (DUb)2

)
(−16 α4 f1 Df1 − 20 α2 Df1 D2f1)

+ B

(
(D2Ub)

2

γ̇b (DUb)3

)
(3 α2 (Df1)

2),

P32 ≡ −2iα c + (Pr Re)2iα Ub − (D2 − 4α2).

In the plug region, the unyielded condition leads to

f2 = 0. (3.45)
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At the walls, the no-slip condition and fixed temperature conditions are, respectively,

f2(±1/2) = 0, (3.46)

θ2(±1/2) = 0. (3.47)

At the yield surfaces, y = y
±
i , the conditions can be written as follows:

2 Df2(±yb) = (Y ±
1 )2 D2Ub, (3.48)

D2f2(±yb) ± Y
±
1 D3f1(±yb) ± Y

±
2 D2Ub = 0, (3.49)

f2(±yb) = 0. (3.50)

Equations (3.48) and (3.50) allow the determination of f2. Equation (3.49) is a
condition for Y

±
2 .

The interaction of the fundamental with its complex conjugate, in the nonlinear
quadratic term N2, results in the first correction of the base flow to order |A|2. It
corresponds to the term V 0 in (3.33). By definition, it does not depend on the x

coordinate.
In order to satisfy the mass conservation, the velocity of mode 0 takes the form

u0 = (u0(y), 0)T . In this respect, it seems more natural to consider the velocity rather
than the streamfunction for this mode.

In the yielded region, one considers fixed pressure gradient conditions, i.e. 〈∂xp0〉x =

0, where 〈•〉x ≡ 1/2X
∫ X

−X
• dx, and a quasi-stationary assumption. Then, the averaged

momentum conservation, with respect to x, identified in terms of ‘E0’ to order |A|2,
is given by

(Pr Re) D2u0 = iαRe(f−1 D2f1 − f1 D2f−1) + Bα2D

(
Df1 Df−1

DUb γ̇b

)
. (3.51)

In (3.51), one notices that u0 comes from an inertial term fIn such as in the Newtonian
case and from an additional Bingham term fB:

fIn = iα(f−1 D2f1 − f1 D2f−1) (3.52)

and

fB = α2D

(
Df1 Df−1

DUb γ̇b

)
. (3.53)

In the plug region, the condition γ̇ij = 0 leads to

∂xu0 = ∂yu0 = 0, (3.54)

then

u0 = const. (3.55)

The heat equation, to order |A|2, reads

D2θ0 = iα(θ1 Df−1 − θ−1 Df1 + f−1 Dθ1 − f1 Dθ−1). (3.56)

The boundary conditions at the walls are given by

u0(±1/2) = 0 and θ0(±1/2) = 0. (3.57)

At the yield surfaces, the conditions are given by

Du0|±yb
± Y

±
0 D2Ub ± Y

±
1 D3f−1(±yb) ± Y

±
−1 D3f1(±yb) = 0. (3.58)
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The additional needed conditions come from momentum-conservation equilibrium
on a plug-zone element Ωs = [d − X; d + X] × [y−

i ; y+
i ], with d being a constant:

d

dt

∫ ∫ ∫
Ωs

(u)i dV =

∮
δΩs

σij (Ub + u)e j dS +

∫ ∫ ∫
Ωs

Ra (Tb + θ)ey dV. (3.59)

Manipulation of this vector equation leads to

[Du0]
yb

−yb
= −α2 B(|Y +

1 |2 + |Y −
1 |2) − 2(Y +

1 D3f−1(yb) + Y +
−1D

3f1(yb)), (3.60)

Ra yb(Y
+
0 − Y −

0 ) = Ra[Y +
1 θ−1(yb) + Y +

−1 θ1(yb) + Y −
1 θ−1(−yb) + Y −

−1 θ1(−yb)]

+ Ra
y2

b

2
α2

c (|Y +
1 |2 − |Y −

1 |2). (3.61)

Calculations are detailed in Appendix C. Combining (3.58), (3.60) and (3.61), one
obtains Y +

0 + Y −
0 and Y +

0 − Y −
0 :

Y +
0 +Y −

0 =
1

D2Ub

[Y +
1 D3f−1(yb) − Y −

1 D3f−1(−yb)+Y +
−1D

3f1(yb) − Y −
−1D

3f1(−yb)]

− 1

D2Ub

[α2 B(|Y +
1 |2 + |Y −

1 |2)] (3.62)

and

(Y +
0 − Y −

0 ) =
1

yb

(Y +
1 θ−1(yb) + Y +

−1 θ1(yb) + Y −
1 θ−1(−yb) + Y −

−1 θ1(−yb))

+
yb α2

2
(|Y +

1 |2 − |Y −
1 |2). (3.63)

3.5. Third-order solution and the amplitude equation

The third-order solution, in particular the cubic mode V 3 = (f3, θ3)
T , permits

determination of the amplitude equation. Substituting (3.33) in (3.1) and identifying
the terms factor of E1, one obtains

|A|2 A(LR + iα c D)V 3 = ∂tA DV 1 − A (LR + iα c D) V 1

− M1(N2(V , V ) + N3(V , V , V )), (3.64)

where the notation Mi(•), for i = 0, 1, 2, 3 corresponds to the identification of • in
terms of mode i, i.e. Ei and

M1(N2(V , V ) + N3(V , V , V )) = E−1 |A|2A ([N2(V −1E
−1, V 2E

2)]

+ [N2(V 1E
1, V 0)]) + E−1(|A|2A [N3(V 1E

1, V 1E
1, V −1E

−1)]), (3.65)

(LR + iα c D) V 1 =
1 + iS

tc
ε DV 1. (3.66)

Remark. The term ((1 + iS)/tc) comes from the growing rate σ = −iα c for which a
Taylor expansion about criticality is written. To first order, it reads

σ = −iωc +
1 + iS

tc
ε + O(ε2), (3.67)

with the critical pulsation ωc = αc c and the characteristic time tc = 1/Re(σ ) > 0.



Weakly nonlinear stability analysis 329

The boundary conditions for V 3 are obtained as for the previous modes and are
given by

f3(±1/2) = Df3(±1/2) = 0, (3.68)

f3(±yb) = 0, (3.69)

Df3(±yb) = ∓Y
±
0 D2f1(±yb) +

(Y ±
1 )2

2
D3f−1(±yb) − Y

±
1 Y

±
−1D

3f1(±yb). (3.70)

One notices that the boundary conditions at the yield surfaces (defined in (3.70))
are inhomogeneous. In order to derive the Fredholm solvability conditions we first
introduce, as in Gross (2002), a new variable V 3H to produce homogeneous boundary
conditions:

V 3H = V 3 − V 3NH , (3.71)

with V 3NH and V 3H ∈ [C2(Ω)] and Ω = [−X; X] × [−1/2; 1/2]. Furthermore, V 3NH

is a function characterized by same boundary conditions as the V 3 ones. Substituting
V 3 = V 3H + V 3NH in (3.64), we obtain

|A|2A(LR + iα c D)V 3H = ∂tA DV 1 − A(LR + iα c D)V 1 − M1(N2(V , V )

+ N3(V , V , V )) − |A|2 A(LR + iα c D)V 3NH . (3.72)

The Fredholm alternative theorem states that (3.72), with the homogeneous boundary
conditions, has a solution if the inhomogeneity (right-hand side of (3.72)) is orthogonal
to the null space of the adjoint operator (the adjoint operator is defined as in Schmid
& Heningson 2001, and is detailed in Appendix D). Therefore, the Hermitian scalar
product of (3.72) with the adjoint mode leads to the amplitude equation, i.e. the
complex Landau equation,

∂tA = ε
1 + iS

tc
A + λ1 |A|2A, (3.73)

with λ1 the Landau coefficient,

λ1 =
1

〈D.V 1E1, Vadj 〉
〈[N2(V −1E

−1, V 2E
2)] + [N2(V 1E

1, V 0)], Vadj 〉

+
1

〈D.V 1E1, Vadj 〉
〈[N3(V 1E

1, V 1E
1, V −1E

−1)], Vadj 〉 + λNH (3.74)

and

λNH = − |A|2A
〈D.V 1E1, Vadj 〉

〈(LR + iα c D)V 3NH , Vadj 〉 (3.75)

= − 1

〈D.V 1E1, Vadj 〉
[Df3 D2fadj ]

yb

−yb
. (3.76)

In these equations, the Hermitian scalar product is defined by

〈V , W〉 =

∫
1

V V · W ∗ dΩ, (3.77)

with V the volume of the domain Ω and W ∗ the complex conjugate of W .
One notices that λNH comes from the V 3NH inhomogeneous conditions at y = ± yb

like those given by (3.70). In the following, we also adopt the notation

λ1 = −g1(1 + iC), (3.78)

where g1 and C are real.



330 C. Métivier, C. Nouar and J.-P. Brancher

4. Results and discussion
4.1. Numerical method

In order to attain the convergence of the whole extensive results leading to the
Landau coefficient λ1 (3.74), an accurate numerical method is used. In particular,
the boundary conditions involve some third-order derivatives which require high
accuracy in calculations. In this respect, the discretization of the system (3.1) subject
to its boundary conditions is done by means of a fourth-order-centred finite scheme.

The discretized linear problem leads to an eigenvalue problem, with c the eigenvalue,
which is solved by using the QZ algorithm implemented in the Matlab 7.1 software
package. The Hermitian scalar products involved in the determination of the Landau
coefficient (3.74) are evaluated by means of the Simpson method.

The numerical code has been tested for the Newtonian case. The critical conditions
obtained via the Newtonian linear problem are compared with the ones computed by
Nicolas (2002). The discrepancy is less than 1 %. Concerning the weakly nonlinear
analysis, our results are compared with those obtained by Müller et al. (1989). For the
case Pr = 1, we recover a supercritical bifurcation (g1 > 0) and that the coefficient C –
given in (3.78) – varies linearly with the Reynolds number. Moreover, for N = 201, we
found C = 0.0108 Rem, with Rem the Reynolds number scaled with the mean velocity.
This coefficient is comparable to the one obtained by Müller: C = 0.0113 Rem.

The convergence of our numerical scheme has been tested in the computation of
the perturbation modes (linear and quadratic) and the Landau coefficient. Converging
results are obtained for N = 801 grid points.

4.2. Linear modes

The linear stability analysis of this flow leads to propagating convective patterns,
on both sides of the plug zone, in the form of travelling waves. Marginal stability
curves are displayed in figure 3 for different values of B . The stabilizing effect of the
yield stress is clearly highlighted. It was shown by Métivier & Nouar (2008) that the
increase in the critical Rayleigh number Rac with increasing B is mainly dominated
by the reduction of the yielded zone width if yb < 0.25 and by the increase in the
effective viscosity if yb > 0.25. In both cases, the viscosity stratification has a weak
influence on the critical conditions.

The structure of the perturbation is represented via the eigenmodes in terms
of temperature and streamfunction (figure 4). The isovalues of temperature and
streamfunction perturbation on a period along x permit characterization of the
contra-rotative rolls on both sides of the plug zone (figure 5).

Moreover, figure 6 represents the yield surface perturbation of the linear mode
for different values of yb. One notices that the maximal value of the perturbation,
in terms of the yield surface position, decreases with increasing yb, meaning that
the perturbation of the plug region is smaller for increasing Bingham numbers.
Furthermore, the perturbed positions of the upper and lower yield surfaces have the
same sign and value at fixed x position. It means that the perturbation of the plug
region corresponds to sinuous modes.

4.3. Quadratic modes

4.3.1. Mode 2

The first harmonic of the perturbation, i.e. the quadratic mode 2, is calculated from
the system (3.43)–(3.50). Results concerning mode 2 are displayed in figure 7, in which
the streamfunction f2(y) and temperature θ2(y) profiles are plotted.
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Figure 3. Marginal curves: numerical results for the case Re = 0.01, Pr = 50 and different
values of B (or yb) varying from 0.08 to 15 (or 0.01–0.3 for yb); × corresponds to the critical
conditions (αc, Rac).

Figure 8 shows the structure of the perturbations via the isovalues of the
streamfunction ψ2(x, y) E2 and the temperature θ2(x, y) E2 in the (x, y) plane, for one
x-period 2 π/α. One recovers for the harmonic the same structure as the fundamental
mode, i.e. the convective patterns on both sides of the plug region. Obviously, one
notices the increasing rolls number since by definition the mode 2 wavelength is half
the fundamental one.

Finally, the yield surface perturbation is displayed in figure 9. One observes that
mode 2 is not negligible. Indeed, for the range of tested values, this quadratic
mode can be 100 times larger than the fundamental one, in terms of streamfunction
temperature and yield surface position. This observation reveals the great importance
of nonlinearities above criticality. This point is discussed in the following sections for
the whole quadratic mode (modes 2 and 0).

4.3.2. Mode 0

Mode 0 is obtained by solving the system of equations (3.51)–(3.56) with the
appropriate boundary conditions (3.58)–(3.63). This harmonic corresponds to the first
perturbation correction of the base flow.

Velocity and temperature profiles of this mode are presented in figure 10. One
notices that the velocity u0 takes negative values, which means that the primary
flow tends to be slowed down. This effect is stronger for increasing B values. In
addition, the width of the unyielded region increases with the perturbation as shown
in figure 11. The u0 negative values and Y +

0 positive ones have opposite contributions
to the instabilities evolution. Indeed, the first one destabilizes the flow and the second
one corresponds to a stabilizing effect.

At the onset of the Rayleigh–Bénard rolls, the convective heat transfer is enhanced,
leading to the reduction of the temperature difference between the wall and the yield



332 C. Métivier, C. Nouar and J.-P. Brancher

–0.5 0 0.5

0

θ1

y
–0.5 0 0.5

0

0.5

1.0

f1

(a) yb = 0.06 (B = 0.62)
y

–0.5 0 0.5

0

0.05

–0.10

θ1

y
–0.5 0 0.5

0

0.5

1.0

f1

(b) yb = 0.105 (B = 1.34)
y

–0.5 0 0.5

0

0.05

–0.10

θ1

y
–0.5 0 0.5

0

0.5

1.0

f1

(c) yb = 0.16 (B = 2.77)
y

Figure 4. (Colour online) Fundamental mode at criticality: temperature (left) and
streamfunction (right); - - -, real parts; − ·−· −, imaginary parts. Numerical results for Re =
0.02 and Pr =50.

surface as is shown by the temperature profiles θ0 in figure 10(b). In other words, θ0,
the modification to order |A|2 of the conductive temperature profile Tb improves the
heat transfer in the yielded regions.



Weakly nonlinear stability analysis 333

0 0.5 1.0
−0.5

0

0.5

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x

0 0.5 1.0
x

0 0.5 1.0
x

0 0.5 1.0
x

0 0.5 1.0
x

0 0.5 1.0
x

y

y

y

−0.5

0

0.5

−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8

(a)  yb = 0.06 (B = 0.62)

(b)  yb = 0.105 (B = 1.34)

(c)  yb = 0.16 (B = 2.77)

−0.5

0

0.5

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−0.5

0

0.5

−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8

−0.5

0

0.5

−0.05

0

0.05

−0.5

0

0.5

−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8

Figure 5. Isovalues of temperature (left) and streamfunction (right) represented on one period
along x for different values of yb . The arrows indicate the rotation direction of the rolls.
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Figure 6. Mode 1 yield surface perturbations for the case Re = 0.02 and Pr = 50.
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Figure 7. Mode 2 perturbations in terms of streamfunction (a) and temperature (b):
numerical results for the case Re = 0.02 and Pr = 50. Solid lines, yb = 0.06 (B = 0.62);
dashed lines, yb = 0.105 (B = 1.34); dot-dashed lines, yb =0.16 (B = 2.77), long-dashed lines,
yb = 0.24 (B = 7.1).
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Figure 8. Mode 2 perturbation: isovalues of the streamfunction (a) and temperature (b) in the
(x, y) plane for one period. The arrows indicate the rotation direction of the rolls. Numerical
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Figure 9. Yield surface perturbation of mode 2. Solid lines, upper interface Y+
2 E2; dashed

lines, lower interface −Y −
2 E2; for Re = 0.02, Pr = 50, yb =0.105 (B = 1.34).
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Figure 10. Mode 0 perturbation: velocity (a) and temperature (b) profiles. Numerical results
for the case Re = 0.02 and Pr = 50. Solid lines, yb = 0.06 (B =0.62); dashed lines, yb = 0.105
(B = 1.34); dot-dashed lines, yb = 0.16 (B = 2.77); long-dashed lines, yb = 0.24 (B =7.1).

As in mode 2, one can highlight the high values taken by mode 0 compared with
the fundamental one. Indeed, in the case presented in figure 10(a), u0 reaches values
of the order O(104). The velocity u0 has an inertial and a viscous origin via fIn and
fB , respectively, as previously defined by (3.51)–(3.53). In figure 12, the nonlinear
quadratic effects fIn and fB are represented in the lower yielded region as a function
of a rescaled y-coordinate. Results are displayed for fixed Reynolds and Prandtl
numbers Re = 0.02, Pr =50 and different yb values. In the light of figure 12, one can
clearly infer the dominant effect of the nonlinear viscous terms compared with the
nonlinear inertia terms. Moreover, one can notice that, for |y∗| < 0.26, the function
fB increases strongly and reaches a maximum at the lower yield surface (y∗ = 0).
The maximal value attained by fB increases with the yield stress value. The strong
variation of fB characterizes the importance of the nonlinear variation of the effective
viscosity with the shear rate, particularly near the yield surface. In other words, the
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Figure 12. Effect of the inertia and viscosity on u0 through the representation of fIn

(left) and fB (right) in the lower yielded region. Solid lines, yb =0.06 (B = 0.62); dashed
lines, yb = 0.105 (B =1.34); dot-dashed lines, yb = 0.16 (B = 2.77); long-dashed lines, yb = 0.24
(B = 7.1)). Numerical results for Pr = 50 and Re = 0.02.

nonlinear variation of the fluid viscosity generates large nonlinear perturbations via
the quadratic modes.

Remark. Quadratic modes have only been displayed for the case Re = 0.02, Pr = 50
since numerical results indicate that the quadratic modes are not really sensitive
to weak variations of the Re and Pr values, i.e. �Re ∼ O(10−2) and �Pr ∼ O(1).
Tendencies similar to those presented in figures 8 and 10 are observed by varying the
Reynolds and Prandtl values.

4.4. Range of validity of the weakly nonlinear analysis

Considering large quadratic modes, the validity of the analysis has to be discussed.
Indeed, the validity of the limited solution, terminated after the quadratic order, is
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yb g1 C tc
ωm

ε
=

C − S

tc
ωc

0.04 11 541 379.7 −13.08 0.0092 −1421.08 4.38
0.06 28 694 943.4 −12.77 0.0213 −978.78 3.95
0.1 377 332 679 −4.80 0.015 −312.44 4.92
0.14 609 062 444.5 −4.14 0.0146 −282.68 4.74
0.16 928 126 236.8 −3.38 0.0138 −245.21 5.01
0.2 1 961 341 646 −2.39 0.0090 −264.97 5.51
0.24 3 823 418 847 −2.25 0.0092 −255.86 5.61

Table 1. Numerical values of the different coefficients involved in the determination of the
amplitude evolution, Pr = 50, Re = 0.02.

conditioned by a dominant fundamental mode with respect to the harmonics, i.e.
|A V 1| � |Ak V k|, for k �= ±1. In order to satisfy this assumption, a condition on the
amplitude modulus is imposed as follows:

|A| � max(|V 1)|
max(|V 0|, |V 2|) . (4.1)

Following Malkus et al. (1958), one can limit the ratio given by (4.1) to a maximal
value of 0.1. On the other hand, numerical results indicate that the maximal value
of the quadratic modes is reached by mode 0. Therefore, for the range of results
obtained, condition (4.1) implies |A| � O(10−4). This weak value indicates that the
weakly nonlinear stability of the Bingham RBP flow has an extremely narrow range
of validity. This result is comparable to the one obtained for the Newtonian case.
Actually, Kuo (1961) and more recently, Generalis & Fujimura (2009) have compared
results obtained via a weakly nonlinear analysis and via a nonlinear analysis in the
Newtonian Rayleigh–Bénard configuration for finite Prandtl values and low Prandtl
values respectively. The authors show that the weakly nonlinear analysis has a limited
range of validity: as a consequence, the number of perturbation modes has to be
increased rapidly in order to describe correctly the amplitude evolution. Concerning
the Newtonian-plane-Poiseuille stability flow, Herbert (1980) has numerically shown
that the range of validity is very narrow. Indeed, the convergence of the Stuart–
Landau equation requires considerably small |A| which does not violate the
assumption of the weak nonlinearity. In this case, the narrow range of validity is
certainly due to the subcritical nature of the bifurcation in the plane-Poiseuille-
flow case.

In this paper, the really narrow range of validity is a consequence of the large
variations of viscosity in the yielded regions. In addition, these weak amplitude values
permit one to confirm that the plug region does not break up, which is an implicit
assumption.

4.5. Amplitude evolution

The amplitude perturbation evolution A(t) depends on the sign of g1 defined by
(3.73) and (3.78). Numerical results obtained for Pr =50, Re = 0.02 and different yb

values are given in table 1. For this range of values, one finds that g1 takes positive
values meaning a supercritical bifurcation. One can observe that g1 increases with
the increase in B , i.e. the increase in the degree of the nonlinearity of rheological
behaviour of the fluid. Physically, large values of g1 are linked to the sensitivity of the
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Figure 13. Amplitude evolution as a function of time above criticality
for a supercritical bifurcation case.

system with respect to strong variations of the viscosity with the shear rate. Indeed,
in the range of low shear rate, a small perturbation may induce a large viscosity
perturbation.

In the supercritical bifurcation case, above criticality, the perturbation amplitude
increases with time and reaches a saturated value Ac.

Using a polar representation of the amplitude,

A = ρ eiφ, (4.2)

one obtains the saturated amplitude,

ρ = |Ac| =

√
ε

tc g1

, (4.3)

and the phase,

φ = φ0 − ωm t, (4.4)

with φ0 an initial value and

ωm =
C − S

tc
ε = g1(C − S)|Ac|2, (4.5)

where ωm corresponds to a correction of the fundamental pulsation ωc =αc c.
Equation (4.4) highlights the amplitude oscillations with time, as displayed in

figure 13. Numerical results indicate that for fixed values of ε = (Ra − Rac)/Ra, the
saturated amplitude Ac decreases for increasing Bingham numbers. In other words,
for fixed ε values, the increase in B limits the saturated amplitude which corresponds
to a stable bifurcation branch. This is a direct consequence of the increase in g1

with the increase in the degree of the nonlinearity in the Bingham model. This is in
agreement with the results obtained by Cheng & Lai (2008).

The critical pulsation ωc is given in table 1 as well as the values of ωm/ε. Results
indicate that for the supercritical Rayleigh numbers, the pulsation ωc and ωm have
opposite signs. It means that the thermoconvective rolls advocated by the mean flow
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Figure 14. Evolution of g1 as a function of yb for different values of the Péclet number
(Pr = 50). Triangles, Pe = 2.5; dark diamonds, Pe = 1.5; circles, Pe = 1.25; nabla symbols,
Pe = 1; crosses, Pe = 0.5.

have decreasing phase velocity for increasing ε values. This result is in agreement
with the effect of the mode 0 velocity which tends to slow down the mean flow.
Moreover, for fixed values of ε, one observes that the nonlinear pulsation is stronger
for weak values of yb since the absolute values of ωm decrease with the Bingham
number.

Numerical results show that the value taken by g1 is sensitive to the Reynolds and
Prandtl values. Indeed, for increasing Reynolds number and fixed Prandtl number, g1

decreases and reaches negative values. In other words, there exists a Reynolds number
from which the bifurcation becomes subcritical. Moreover, when the Prandtl number
varies between 1 and 100, one observes that the nature of the bifurcation changes
around Pe = Re Pr � O(1). This unit Péclet value corresponds to the situation where
there is an equilibrium between the convective (via inertia) and the diffusion effects.
The bifurcation is found to be subcritical for Pe > O(1), as is indicated in figure 14,
which occurs when the convective effects are dominant. One can notice that the
transition from supercritical to subcritical bifurcation occurs first for weak values of
the yield stress.

Considering the different coefficients in (3.74), the numerical results show that the
origin of the change in the nature of the bifurcation is mainly due to (i) the additional
coefficient λNH given by (3.76) and (ii) the nonlinear Bingham coefficients, i.e. the
quadratic N2B and cubic N3 coefficients defined as follows:

N2B =
1

〈D.V 1E1, Vadj 〉
〈[N2(V −1E

−1, V 2E
2)]B, Vadj 〉, (4.6)

N3 =
1

〈D.V 1E1, Vadj 〉
〈[N3(V 1E

1, V 1E
1, V −1E

−1)], Vadj 〉. (4.7)

One notices that the dominant Bingham quadratic coefficient N2B comes from the
interaction between modes 2 and −1. The interaction between modes 1 and 0 is found
to be negligible in the coefficient N2. The cubic coefficient N3 is only due to the
effective viscosity perturbation and then is a factor of B .



340 C. Métivier, C. Nouar and J.-P. Brancher

–1 × 10–5 1 × 10–50
0

7.5 × 10–6

1.5 × 10–5

|A|

ε

Ac

Increasing |g1|

Figure 15. Schematic representation of the amplitude evolution as a function of ε for different
values of g1: – – –, subcritical bifurcation (g1 < 0); ——–, supercritical bifurcation (g1 > 0).

For the range of tested values, the numerical results indicate that the sign of λNH

and N2B values is negative while the sign of N3 is positive. One observes that for
Pe = O(10−1), the dominant coefficient is N3, implying a supercritical bifurcation.
Close to the value Pec = O(1) and for weak values of yb (yb <O(10−1)), the coefficient
λNH is the dominant contribution, which favours a subcritical bifurcation. This
contribution is the consequence of the presence of the two phases ‘solid’ and ‘liquid’
via the yield surface conditions where γ̇ = 0.

For increasing yb values (yb >O(10−1)), the sign of g1 is mainly determined by the
contribution (ii) via the balance between N2B and N3 values, which have opposite
signs. Then, for yb >O(10−1) and close to Pec =O(1), results can be summarized as
follows.

(i) Pe <Pec (dominant diffusion effects): |N2B | < N3 then g1 > 0 and the
bifurcation is supercritical.

(ii) Pe > Pec (dominant convective effects): |N2B | > N3 then g1 < 0 and the
bifurcation is subcritical.

Finally, for weak values of yb, the change in the nature of the bifurcation is
mainly due to the yield surface conditions γ̇ =0 via the additional coefficient λNH .
For yb >O(10−1), the subcritical bifurcation is mainly due to the variations of the
effective viscosity through the quadratic Bingham coefficient.

Furthermore, numerical results indicate that the change of the g1 sign occurs for
a very weak variation of the Péclet number, i.e. �Pe = O(10−3). In this respect,
the transition from a supercritical to a subcritical bifurcation would be difficult to
observe. On the other hand, the perturbed modes vary weakly with Pe meaning
that the restrictive condition (4.1) imposed on the amplitude |A| remains constant
by varying weakly the Péclet number. Considering a supercritical bifurcation, the
maximal value of |A| corresponds to the saturated amplitude Ac see (4.3). One notices
that the amplitude remains weak if ε values are also weak. For the range of values
considered in the study, for weak yb, one finds that |A| <O(10−5), then ε <O(10−4).
This range of values leads to fluctuations of the Rayleigh numbers of the order
O(10). It means that the problem rapidly becomes nonlinear, in terms of increasing
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Ra values. In the Newtonian case, the validity domain of this analysis is larger and
the numerical results of g1 lead to finite and limited values (g1 ∼ O(10)). In this sense,
the perturbation amplitudes reach values which can be experimentally observed and
compared with the weakly nonlinear analysis (Ouazzani et al. 1994).

5. Conclusion
In this paper, we have investigated the yield stress effect on the nonlinear features

of the RBP flow above criticality. A weakly nonlinear analysis based on the amplitude
expansion is used in this study. Although Squire’s theorem does not apply to our
problem, the study was restricted to the two-dimensional case.

The mathematical formulation is presented and solutions are determined
numerically by means of a fourth-order-centred finite-difference scheme. Compared
with the Newtonian case, two phases, solid-like and liquid-like, have to be considered
and additional nonlinear terms appear in the momentum equations via the viscosity
perturbation. This study presents the influence of the yield stress and the shear-
thinning behaviour on the determination of the quadratic modes and the perturbation
amplitude evolution. In particular, we show that the nonlinear stability of the Bingham
RBP flow is quite different from the Newtonian case, even at the limit yb → 0 since
a thin unyielded region separates the two yielded regions. The determination of
the quadratic modes, particularly mode 0, permits one to highlight the effect of
the shear-thinning behaviour via the viscosity variations in the yielded regions. The
increase in the degree of the nonlinearity of the rheological behaviour intensifies the
mode 0.

The determination of the amplitude equation permits one to shed light on an
abrupt change in the bifurcation nature at Pec ≈ O(1), critical value which depends
on yb. Indeed, we show that for weak values of the Péclet number (Pe � Pec) the
bifurcation is supercritical while above Pec the bifurcation becomes subcritical. An
interesting influence has also been underlined in our study: it concerns the presence of
the plug regions, which involves specific (inhomogeneous) conditions at yield surfaces.
These non-homogeneous boundary conditions at the yield surfaces tend to promote
a subcritical bifurcation since their contribution to g1 is dominant for weak thickness
of the plug zone. For yb >O(10−1), the subcritical bifurcation is mainly due to the
variations of the effective viscosity through the quadratic Bingham coefficient. It
highlights the dominant effect of the shear-thinning behaviour, when yb >O(10−1),
on the nature of the bifurcation, which is confirmed by the results given in the
Rayleigh–Bénard configuration, by Khayat (1996), considering the Carreau–Yasuda
model, and the one given by Cheng & Lai (2008), considering viscoplastic fluids, in
fully yielded configuration. In these papers, the authors highlight clearly a transition
from a supercritical bifurcation to a subcritical one, increasing the shear-thinning
behaviour.

The range of the weakly nonlinear validity has also been discussed. One finds
that the range of validity is very narrow, regarding the amplitude values. Indeed,
in order to keep the fundamental mode as the dominant perturbation mode, a
restricted condition is given on the amplitude value. Numerical results indicate
that the framework of this stability analysis corresponds, as it is assumed, to
small-amplitude perturbation, i.e. |A| <O(10−5). In addition, this study shows that
this condition is satisfied if ε, the reduced control parameter, also remains small
(ε < O(10−4)), meaning that the perturbed flow rapidly becomes fully nonlinear
above criticality. The small perturbation assumes implicitly that the topology of
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the perturbed flow is unchanged compared with the base flow (similar to the linear-
stability assumptions). It means that, in the framework of the weakly nonlinear
analysis, the central unyielded region is weakly perturbed, and the flow remains
divided into two separate yielded and unyielded regions. Outside this framework,
the question is when the unyielded zone would break up due to the onset and the
evolution of the thermoconvective rolls. One aspect of our study would be to carry
on the (weakly) nonlinear analysis, increasing the number of perturbation modes. In
the Bingham case, this can be developed until the plug zone breaks up, and consists
in considering a larger number of perturbation modes. It could provide interesting
information on (i) the evolution of the finite amplitude perturbation and (ii) the
condition above which the plug would break. This constitutes one aspect of our
work.

The knowledge of the flow features above the break-up of the unyielded region is
still a tedious problem. The difficulty is due to the fact that the stress is indeterminate
in unyielded regions, considering the constitutive Bingham law (or the generalized
Herschel–Bulkley law). In general, the Bingham (or Herschel–Bulkley) model is
frequently used since it describes laminar flows well. However, considering the
situations where the topology is modified and is not known a priori, these models
are not adapted for theory. Several issues can be considered in order to overlap this
limiting case: (i) perform experiments or direct numerical simulations by means of the
augmented Lagrangian algorithm from Fortin & Glowinski (1983), which is widely
used (e.g. Huilgol & Panizza 1995; Vinay, Wachs & Agassant 2005; Zhang, Vola &
Frigaard 2006), (ii) consider a more realistic model which describes a yielded gel,
with an elastic behaviour for instance. These issues constitute other aspects of our
work.

Appendix A. Yield surface conditions
A.1. The yield condition

At the yield surfaces (y = y
±
i ), the yield condition is γ̇ (Ub + u)|

y
±
i

= 0.

The Taylor expansion of each rate of strain components is given in the
following.

(i) γ̇xx |
y

±
i

= 0 ⇔ ∂u

∂x

∣∣∣∣
y

±
i

= 0, leading to

∂u

∂x

∣∣∣∣
y

±
i

=
∂u

∂x

∣∣∣∣
±yb

+
(
±Y ±)[ ∂2u

∂x∂y

]
±yb

+

(
±Y ±)2

2

[
∂3u

∂x∂y∂y

]
±yb

+ · · · . (A 1)

(ii) γ̇yy |
y

±
i

= 0 ⇔ ∂v

∂y

∣∣∣∣
y

±
i

= 0:

∂v

∂y

∣∣∣∣
y

±
i

=
∂v

∂y

∣∣∣∣
±yb

+
(
±Y ±)[ ∂2v

(∂y)2

]
±yb

+

(
±Y ±)2

2

[
∂3v

(∂y)3

]
±yb

+ · · · . (A 2)
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(iii) γ̇xy |
y

±
i

= 0 ⇔
[
∂(Ub + u)

∂y
+

∂v

∂x

]
y

±
i

= 0:

[
∂(Ub + u)

∂y
+

∂v

∂x

]
y

±
i

=
∂Ub

∂y

∣∣∣∣
±yb

+

[(
±Y ±) [

∂2Ub

(∂y)2

]
±yb

+
∂u

∂y

∣∣∣∣
±yb

+
∂v

∂x

∣∣∣∣
±yb

]

+

[(
±Y ±) [

∂2u

(∂y)2
+

∂2v

∂x∂y

]
±yb

]
+

[
(±Y ±)2

2

[
∂3u

(∂y)3

]
±yb

+
(±Y ±)2

2

[
∂3v

∂x∂y2

]
±yb

]
+ · · · . (A 3)

A.2. Velocity continuity

The velocity in the unyielded region is deduced considering the translational motion
of this zone which implies that ∂U/∂x = ∂U/∂y = 0. In particular, at the yield surfaces,
one can write:

∂u

∂x

∣∣∣∣
y

±
i

= γ̇xx |
y

±
i

= 0, (A 4)

∂v

∂y

∣∣∣∣
y

±
i

= γ̇yy |
y

±
i

= 0, (A 5)

∂(Ub + u)

∂y

∣∣∣∣
y

±
i

=
∂v

∂x

∣∣∣∣
y

±
i

= 0. (A 6)

Equations (A 4) and (A 7) have already been considered with (A 1) and (A 2).
Expanding (A 6), one can obtain

∂Ub

∂y

∣∣∣∣
±yb

+ (±Y ±)

[
∂2Ub

(∂y)2

]
±yb

+
∂u

∂y

∣∣∣∣
±yb

+ (±Y ±)

[
∂2u

(∂y)2

]
±yb

+

(
±Y ±)2

2

[
∂3u

(∂y)3

]
±yb

+ · · · = 0 (A 7)

and

∂v

∂x

∣∣∣∣
±yb

+
(
±Y ±) [

∂2v

∂x∂y

]
±yb

+

(
±Y ±)2

2

[
∂3v

∂x∂y2

]
±yb

+ · · · = 0. (A 8)

Finally, (A 1), (A 2), (A 7) and (A 8) correspond to the conditions at the yield
surfaces. Considering the perturbation solution (3.33), each mode condition is obtained
by identifying the order of amplitude perturbation. They are given in the following
subsections.
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A.3. Linear mode yield surface conditions

The linear mode is given in terms of velocity and yield surface positions by[
(u1, v1), ±Y

±
1

]
. The conditions at the yield surfaces y = y

±
i are given by

∂u1

∂x

∣∣∣∣
±yb

= 0, (A 9)

∂v1

∂y

∣∣∣∣
±yb

= 0, (A 10)

±Y
±
1 D2Ub(±yb) +

∂u1

∂y

∣∣∣∣
±yb

= 0, (A 11)

∂v1

∂x

∣∣∣∣
±yb

= 0. (A 12)

Similar conditions can be written for the complex conjugate [(u−1, v−1), ±Y
±
−1].

A.4. Quadratic modes yield surface conditions

(i) Mode 0: [(u0(y), 0), ±Y
±
0 ]

∂u0

∂y

∣∣∣∣
±yb

± Y
±
0 D2Ub(±yb) ± Y

±
1

∂2u−1

∂y2

∣∣∣∣
±yb

± Y
±
−1

∂2u1

∂y2

∣∣∣∣
±yb

= 0. (A 13)

(ii) Mode 2: [A2((u2, v2), ±Y
±
2 )]

∂u2

∂x
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±yb

± Y
±
1

∂2u1

∂x∂y

∣∣∣∣
±yb

= 0, (A 14)
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±yb

± Y
±
1

∂2v1

∂y2
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= 0, (A 15)

∂u2

∂y
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±yb

± Y
±
2 D2Ub(±yb) ± Y

±
1

∂2u1

∂y2
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= 0, (A 16)

∂v2

∂x

∣∣∣∣
±yb

± Y
±
1

∂2v1

∂x∂y
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±yb

= 0. (A 17)

Appendix B. Nonlinear expression of the stress tensor: the Bingham RBP case
B.1. Stress tensor

Considering the particular Bingham RBP case, one can simplify (3.16)–(3.18) as
follows. First, the expression of the stress tensor associated to the basic flow is

τ b =

(
τbxx τbxy

τbxy τbyy

)
=

⎛⎜⎜⎝ 0
(DUb) (B + γ̇b)

γ̇b

(DUb) (B + γ̇b)

γ̇b

0

⎞⎟⎟⎠. (B 1)

Concerning the perturbed flow, we obtain for the linear term

τ 1 =

⎛⎜⎜⎝2

(
1 +

B

γ̇b

)
∂xyψ ∂yyψ − ∂xxψ

∂yyψ − ∂xxψ −2

(
1 +

B

γ̇b

)
∂xyψ

⎞⎟⎟⎠ (B 2)
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and for the quadratic nonlinear term

τ 2 =
1

Pr Re

⎛⎜⎜⎝
−2B ∂xyψ (∂yyψ − ∂xxψ)

DUb γ̇b

−B (∂xyψ)2

2 DUb γ̇b

−B (∂xyψ)2

2 DUb γ̇b

2B ∂xyψ (∂yyψ − ∂xxψ)

DUb γ̇b

⎞⎟⎟⎠. (B 3)

Finally, the cubic term of the tensor is

τ 3 =

(
τ3xx τ3xy

τ3xy τ3yy

)
, (B 4)

with

τ3xx = −τ3yy =
−B ∂xyψ (−2 (∂yyψ)2 + (∂xyψ)2 + 4 (∂yyψ)(∂xxψ) − 2 (∂xxψ)2)

(Pr Re)2 γ̇ 3
b

(B 5)

and

τ3xy =
B(∂xyψ)2 (∂yyψ − ∂xxψ)

2 γ̇ 3
b (PrRe)2

. (B 6)

B.2. Quadratic and cubic terms of the vorticity equation

For readability reasons, the following expressions are given in terms of velocity
(defined in (2.1b)).

Developing the quadratic part of the vorticity equation (defined in (3.26)) using
expressions (B 3)–(B 6) of the stress tensor perturbation, one obtains

(Pr Re)N21 = Re(−u �v + v �u) + B

[
4∂xy

(
∂xu(∂yu + ∂xv)

(DUb)2

)]
+ B

[
1

2
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DUb
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and

(Pr Re)2 N31 = 2 B D
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1

γ̇ 3
b

∂x((∂xu)3 − 2 ∂xu(∂xv + ∂yu)2)

]
− B D2

[
1

γ̇ 3
b

(∂xu)2(∂yu + ∂xv)

]
+

B

γ̇ 3
b

∂xx((∂xu)2(∂yu + ∂xv)). (B 8)

Appendix C. Calculations of mode 0 boundary conditions
The additional boundary conditions of mode 0 are obtained writing the momentum

equilibrium of an element of the perturbed plug zone as displayed in figure 16. In
this respect, we define the domain Ωs = [d − X; d + X] × [−yi; yi], with d being a
constant. The momentum equilibrium is given by

d

dt

∫ ∫ ∫
Ωs

ui dV =

∮
δΩs

σij (Ub + u) njdS +

∫ ∫ ∫
Ωs

Ra (Tb + θ) δi2 e2 dV. (C 1)
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Figure 16. Scheme of the perturbed unyielded region.

The normal vectors associated to faces (1), (2), (3) and (4) can be, respectively, written
to quadratic order:

n(1) =
1√

1 + (∂xY +)2

(
∂xY

+

1

)
=

(
∂xY

+ + · · ·
1 − 1/2(∂xY

+)2 + · · ·

)
, (C 2)

n(2) =

( −∂xY
− + · · ·

−1 + 1/2(∂xY
−)2 + · · ·

)
, (C 3)

n(3) =

(
1

0

)
, n(4) =

(−1

0

)
. (C 4)

We know that the velocities u1 and u2 vanish in the unyielded region (defined in
(3.36) and (3.45)). Considering (3.33), we know that ‘E0 u0’ does not depend on time t .
Furthermore, the quasi-stationary assumption on the amplitude permits cancellation
of the first term in (C 1). Finally the equilibrium can be written as follows:∮

δΩs

σij (Ub + u) ej dS +

∫ ∫ ∫
Ωs

Ra(Tb + θ)δi2 e2 dV = 0. (C 5)

Expanding this equation we obtain∫ d+X

d−X

[∂xY
± × ((−pb − p) δi1 + τi1(Ub + u))]yi

−yi
dx

+

∫ d+X

d−X

[
(1 − 1/2(∂xY

±)2) × (−(pb + p) δi2 + τi2(Ub + u))
]yi

−yi
dx

+

∫ yi

−yi

[−pb δi1 + τi1(Ub + u)]d+X
d−X dy +

∫ yi

−yi

∫ X

−X

Ra(Tb + θ)δi2 dx dy = 0. (C 6)

Since the required condition corresponds to the mode 0 identification, we can notice
that the functions to integrate do not depend on x except pb, the pressure of the basic
flow as given by (2.5).
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Let us define Pb as follows:

Pb = pb − Pmd − pref , (C 7)

with Pmd the mean pressure in the interval [d − X; d + X]. Since Pmd and pref are
constant values, the integral of pb is equal to the integral of Pb. Moreover, one can
notice that in the case d = 0, Pb = pb − pref since Pm0 = 0. Then one can write:∫ yi

−yi

∫ d+X

d−X

pbej dS =

∫ yi

−yi

∫ X

−X

Pb ej dS (C 8)

=

∫ yi

−yi

∫ X

−X

(
−Ra

y2

2
− B

yb

x

)
ej dS. (C 9)

C.1. The x-projection: case i = 1

The projection of (C 6) along x can be written as follows:∫ X

−X

B1 dx +

∫ X

−X

B2 dx +

∫ yi

−yi

B3 dy = 0 (C 10)

with

B1 = [∂xY
± × (−Pb − p + τxx(Ψ ))]yi

−yi
, (C 11)

B2 =
[(

1 − 1/2(∂xY
±)2

)
× τxy (Ψ )

]yi

−yi
(C 12)

and

B3 =

∫ yi

−yi

[−Pb + τxx (Ψ )]X−X dy. (C 13)

In the following sections, we propose to identify mode 0 of the terms B1, B2

and B3.

C.1.1. M0(B1) calculation

Considering (3.33), one has

M0(B1) = [∂xY
±
1 × M−1(−P − p + τxx(Ψ ))]yi

−yi
+ [∂xY

±
−1 × M1(−P − p + τxx(Ψ ))]yi

−yi
.

(C 14)

The Taylor expansion around yb permits one to write

M1

(
[−P − p + τxx(Ψ )]yi

−yi

)
= [± Y

±
1 Ra y]yb

−yb
− [p1]

yb

−yb
+ [τ1xx(ψ1)]

yb

−yb
, (C 15)

M−1

(
[−P − p + τxx(Ψ )]yi

−yi

)
= [± Y

±
−1Ra y]yb

−yb
− [p−1]

yb

−yb
+ [τ1xx(ψ−1)]

yb

−yb
, (C 16)

with

τ1xx(ψ±1) = 2

(
1 +

B

γ̇b

)
× (±iα Df±1). (C 17)

One knows that

lim
y→±yb

Df1

γ̇b

= lim
±yb

D2f1

Dγ̇b

=
±Y +

1 D2Ub(±yb)

∓D2Ub(±yb)
= −Y

±
1 and lim

y→±yb

Df−1

γ̇b

= −Y
±
−1,

(C 18)
and using the boundary conditions (3.40), one can obtain

[τ1xx(ψ±1)]
yb

−yb
= ∓2iα B Y +

±1 ± 2iα B Y −
±1. (C 19)
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Moreover, concerning the pressure terms, writing the x-component of the Navier–
Stokes equation at y = yb and using the pressure continuity at this point, we obtain

p±1(yb) = ±2 B α

i
Y +

±1 ± 1

iα
D3f±1(yb), and p±1(−yb) = ±2 B α

i
Y −

±1 ± 1

iα
D3f±1(−yb).

(C 20)

Finally, the identification of B1 to order |A|2 is given by

M0 (B1) = Y +
1 D3f−1(yb) − Y −

1 D3f−1(−yb) + Y +
−1D

3f1(yb) − Y −
−1D

3f1(−yb). (C 21)

C.1.2. M0(B2) calculation

B2 =
(
1 − 1/2(∂xY

±)2
)

× [τxy (Ψ )]yi

−yi
. (C 22)

The Taylor expansion around yb of the different terms can be written as follows:

τxy (Ψ )|
yi

= τxy (Ψ )|
yb

+ Y +[∂yτxy (Ψ )]yb
+

(Y +)2

2
[∂yyτxy (Ψ )]yb

+ · · · . (C 23)

The same expansions are written around y = −yb.
After some algebra, one obtains

M0(B2) = [Du0]
yb

−yb
− B

yb

(Y +
0 + Y −

0 ) + B α2(|Y −
1 |2 + |Y +

1 |2) + Y +
1 D3f−1(yb)

+ Y −
1 D3f−1(−yb) + Y +

−1D
3f1(yb) + Y −

−1D
3f1(−yb). (C 24)

C.1.3. M0(B3) calculation

M0

(∫ yi

−yi

B3 dy

)
= M0

(∫ yi

−yi

[−P ]X−X dy

)
, (C 25)

=
(
Y +

0 + Y −
0

)
× 2X

8 Re Pr

(1 − yb)2
, (C 26)

=
(
Y +

0 + Y −
0

)
× 2X

B

yb

. (C 27)

C.1.4. Conclusion: the momentum equation along x

Equation (C 10) written in terms of mode 0 leads finally to

[Du0]
yb

−yb
= − α2 B(|Y +

1 |2 + |Y −
1 |2) − 2(Y +

1 D3f−1(yb) + Y +
−1D

3f1(yb)). (C 28)

C.2. The y-projection: case i = 2

The projection of (C 6) along y can be written as follows:∫ X

−X

C1 dx +

∫ X

−X

[C2 + C3 + C4] dx +

∫ yi

−yi

C5 dy + C6 = 0 (C 29)

with

C1 = [∂xY
± × τxy (Ψ )]yi

−yi
, C2 =

[(
1 − 1/2(∂xY

±)2
)

× τyy(Ψ )
]yi

−yi
, (C 30)

C3 = [−(P + p)]yi

−yi
, C4 =

[
−1/2(∂xY

±)2 × (−P − p)
]yi

−yi
, (C 31)

C5 = [τxy (Ψ )]X−X and C6 = Ra

∫ yi

−yi

∫ X

−X

(Tb + θ) dx dy. (C 32)
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C.2.1. M0(C1) calculation

As for the previously discussed methods, we use the Taylor expansion and then we
identify the terms of the order |A|2:

M0

(
[∂xY

+ × τxy (Ψ )]yi

)
= iα

(
[Y +

1 τ1xy(ψ−1)]yb
− [Y +

−1 τ1xy(ψ1)]yb

)
+ iα

(
[Y +

−1Y
+
1 ∂yτbxy]yb

− [Y +
1 Y +

−1∂yτbxy]yb

)
= iα

(
[Y +

1 τ1xy(ψ−1)]yb
− [Y +

−1τ1xy(ψ1)]yb

)
. (C 33)

A similar expression is developed at y = −yi .
Evaluating the stresses, one finally obtains

M0(C1) = iα(Y +
1 D2f−1(yb) − Y +

−1D
2f1(yb))

− iα(Y −
1 D2f−1(−yb) − Y −

−1D
2f1(−yb)). (C 34)

C.2.2. M0(C2) calculation

Since τbyy = 0, then M0(C2) = M0([τyy(Ψ )]yi

−yi
).

The Taylor expansion permits one to write as follows:

M0(C2) = [Y +
1 ∂yτ1yy(ψ−1)]yb

+ [Y +
−1∂yτ1yy(ψ1)]yb

+ [Y −
1 ∂yτ1yy(ψ−1)]−yb

+ [Y −
−1∂yτ1yy(ψ1)]−yb

. (C 35)

C.2.3. M0(C3) calculation

M0 (C3) = M0

(
[−P ]yi

−yi

)
− M0

(
[p]yi

−yi

)
, (C 36)

with

M0

(
[−P ]yi

−yi

)
= Ra yb

(
Y +

0 − Y −
0

)
+ Ra

(
|Y +

1 |2 − |Y −
1 |2

)
, (C 37)

and using the Taylor expansions:

M0

(
[−p ]yi

−yi

)
= [−p0]

yb

−yb
− Y +

1 ∂yp−1

∣∣
yb

− Y +
−1∂yp1

∣∣
yb

− Y −
1 ∂yp−1|−yb

− Y −
−1∂yp1|−yb

.

(C 38)

For the term p0, one can write the Navier–Stokes equation along y, identified in
terms of mode 0: one obtains

0 = −∂yp0 + ∂xτ1xy(u0) + ∂yτ1yy(u0) + Ra θ0 + ∂y(τ2yy(ψ1, ψ−1)

+ τ2yy(ψ−1, ψ1)) + ∂x(τ2xy(ψ1, ψ−1) + τ2xy(ψ−1, ψ1)), (C 39)

with

∂xτ1xy(u0) = 0, ∂yτ1yy(u0) = 0 and ∂x(τ2xy(ψ1, ψ−1) + τ2xy(ψ−1, ψ1)) = 0.

Integrating this equation, one obtains

[p0]
yb

−yb
= lim

yb

[τ2yy(ψ1, ψ−1) + τ2yy(ψ−1, ψ1)]

− lim
−yb

[τ2yy(ψ1, ψ−1) + τ2yy(ψ−1, ψ1)] +

∫ yb

−yb

Ra T0 dy, (C 40)
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with

lim
yb

[τ2yy(ψ1, ψ−1) + τ2yy(ψ−1, ψ1)] = 2iαB

[
D2f−1(yb) lim

yb

Df1

γ̇b

− D2f1(yb) lim
yb

Df−1

γ̇b

]
= 0, (C 41)

and similarly

lim
−yb

[τ2yy(ψ1, ψ−1) + τ2yy(ψ−1, ψ1)] = 0. (C 42)

We finally obtain

M0 (C3) = Ra

[
yb

(
Y +

0 − Y −
0

)
+

(
|Y +

1 |2 − |Y −
1 |2

)
−

∫ yb

−yb

T0 dy

]
− Y +

1 ∂yp−1

∣∣
yb

− Y +
−1∂yp1

∣∣
yb

− Y −
1 ∂yp−1|−yb

− Y −
−1∂yp1|−yb

. (C 43)

Remark. The terms involving ∂yp±1 are not evaluated at this stage, since they could
be combined with the stress terms of (C 35) writing the Navier–Stokes equation.

C.2.4. M0(C4) calculation

M0(C4) = M0

( [
−1/2(∂xY

±)2 × (−P )
]yi

−yi

)
=

(
−Ra

y2
b

2
− B

yb

M0 (x)

)(
α2 |Y +

1 |2 − α2 |Y −
1 |2

)
. (C 44)

Developing the function x �→ x, defined on [−X; X], in the base (ei nα x)n as follows:

x = a0 +
∑

n

an cos(nα x) + i
∑

n

bn sin(nα x). (C 45)

One obtains

a0 = 0; ∀n ∈ �∗ an = 0 and bn = − i

nα
. (C 46)

Then

x =
∑

n

1

nα
sin(nα x) (C 47)

and

M0 (x) = a0 = 0. (C 48)

Finally, one can write

M0 (C4) = −α2 Ra
y2

b

2

(
|Y +

1 |2 − |Y −
1 |2

)
. (C 49)

C.2.5. M0(C5) calculation

[τxy (Ψ )]X−X = [τbxy(Ψ )]X−X + [τ1xy(u0)]
X
−X + [τ1xy(ψ1)]

X
−X + [τ1xy(ψ−1) + · · · ]X−X, (C 50)

[τbxy(Ψ )]X−X = [τ1xy(u0)]
X
−X = 0, (C 51)

since τbxy(Ψ ) and τ1xy(u0) do not depend on x. The remaining terms are periodic with
period 2X; then

C5 = 0. (C 52)
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C.2.6. M0(C6) calculation

C6 = Ra

∫ yi

−yi

∫ X

−X

(Tb + θ0) dx dy, (C 53)

since
∫ X

−X
T1 dx =

∫ X

−X
T−1 dx =

∫ X

−X
T2 dx =

∫ X

−X
T−2 dx = 0. One can write

C6 = 2X Ra

([
−y2

2

]yi

−yi

+

∫ yi

−yi

θ0 dy

)
, (C 54)

M0 (C6) = 2XRa

(
−

(
|Y +

1 |2 − |Y −
1 |2

)
+ M0

(∫ yi

−yi

θ0 dy

))
. (C 55)

Introducing Θ0, a primitive of θ0, and using a Taylor expansion of Θ0 around ±yb,
we can show that

M0

(∫ yi

−yi

θ0 dy

)
=

∫ yb

−yb

θ0 dy. (C 56)

Further,

M0 (C6) = 2X Ra

(
−|Y +

1 |2 + |Y −
1 |2 +

∫ yb

−yb

θ0 dy

)
. (C 57)

C.2.7. Conclusion: the momentum equation along y

In conclusion, the momentum conservation along y can be written as follows:

Ra yb

(
Y +

0 − Y −
0

)
= Ra

(
Y +

1 θ−1(yb) + Y +
−1 θ1(yb) + Y −

1 θ−1(−yb) + Y −
−1 θ1(−yb)

)
+ Ra

y2
b

2
α2

c

(
|Y +

1 |2 − |Y −
1 |2

)
. (C 58)

Appendix D. Adjoint operator

The determination of the adjoint problem consists in seeking operators D†, L†
R

such that

〈D V , Vadj 〉 = 〈V , D† Vadj 〉 and 〈LR V , Vadj 〉 = 〈V , L†
R Vadj 〉, (D 1)

where Vadj = (fadj , θadj )
T corresponds to the adjoint vector and the Hermitian scalar

product is defined by

〈V , W〉 =

∫
1

V V · W ∗ dΩ, (D 2)

with V the volume of the domain Ω and W ∗ the complex conjugate of W .
Finally, the adjoint problem is given as follows. In the yielded region:

iα c

(
D†

1 0

0 −1

)(
fadj

θadj

)
=

(
L†

R1 −iα

iαRa L†
R4

)(
fadj

θadj

)
with L†

R1, L†
R3 and D†

1 given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
L†

R1 ≡ −iαRe
[
Ub

(
D2 − α2

)
+ 2DUb D

]
−

(
D2 − α2

)2
+ 4 α2 BD

(
D

|DUb|

)
,

L†
R4 ≡ −iα Pr Re Ub − (D2 − α2),

D†
1 ≡ D1.
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In the unyielded region:

fadj = 0,

LR3 θadj = c θadj .

Boundary conditions for Vadj are similar to those given for the linear mode V 1, i.e.
(3.38)–(3.40).
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